Emerging Brain Imaging Methods for Assessing Normal and Abnormal Cognitive Function

Mark D’Esposito, M.D.
Helen Wills Neuroscience Institute
University of California, Berkeley
BRAIN IMAGING

STRUCTURAL

MRI

FUNCTIONAL

PET

fMRI
Magnetic Resonance Imaging
Susceptibility Weighted Imaging

T2

SWI
Diffusion Weighted Imaging
Håberg et al., *Journal of Neuroscience Research*, 2014
BRAIN IMAGING

STRUCTURAL

MRI

PET

FUNCTIONAL

fMRI
Functional MRI
Functional Brain Connections
The brain is organized into “modules” (or communities)

- Central module
- Parieto–frontal module
- Medial occipital module
- Lateral occipital module
- Fronto–temporal module
The brain is a modular system

- Modules are a set of independent and self-contained units that can be used to construct a more complex structure
- Each module comprises a number of nodes that are densely intra-connected to each other but sparsely inter-connected to nodes in other modules
- Modules implement discrete functions
- Modules interact with each other through "connector" hubs
Impact of nodal role on modularity

Module 1
- Milwaukee

Module 2
- Chicago
- San Francisco
- New York

Module 3

HUB
CONNECTOR
Effect of focal lesions on brain modularity
Warren et al., *PNAS*, 2014

Domains
- Orientation
- Perception
- Memory
- Verbal Func.
- Construct.
- Concept Form.
- Exec. Func.
- Personal Adj.
- Adaptive Func.

Control Group
- amPFC
- pCC

Target Group
- L pMFG
- L alns
- dmPFC
- R alns
- R pMFG
- L pMTG

Impairment rating
- 0
- 1
- 2

CONNECTOR
- **HUB**
<table>
<thead>
<tr>
<th>Disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention deficit hyperactivity disorder</td>
</tr>
<tr>
<td>Amyotrophic lateral sclerosis</td>
</tr>
<tr>
<td>Anorexia nervosa</td>
</tr>
<tr>
<td>Asperger’s syndrome</td>
</tr>
<tr>
<td>Autism (pervasive developmental disorder excluding Asperger’s syndrome)</td>
</tr>
<tr>
<td>Bipolar affective disorder</td>
</tr>
<tr>
<td>Chronic pain</td>
</tr>
<tr>
<td>Dementia in Alzheimer’s disease</td>
</tr>
<tr>
<td>Dementia in Parkinson’s disease</td>
</tr>
<tr>
<td>Depressive disorder</td>
</tr>
<tr>
<td>Developmental dyslexia</td>
</tr>
<tr>
<td>Dystonia</td>
</tr>
<tr>
<td>Frontotemporal dementia</td>
</tr>
<tr>
<td>Hereditary ataxia</td>
</tr>
<tr>
<td>Huntington’s disease</td>
</tr>
<tr>
<td>Juvenile myoclonic epilepsy</td>
</tr>
<tr>
<td>Multiple sclerosis</td>
</tr>
<tr>
<td>Obsessive-compulsive disorder</td>
</tr>
<tr>
<td>Obstructive sleep apnoea</td>
</tr>
<tr>
<td>Panic disorder</td>
</tr>
<tr>
<td>Parkinson’s disease</td>
</tr>
<tr>
<td>Progressive supranuclear palsy</td>
</tr>
<tr>
<td>Post traumatic stress disorder</td>
</tr>
<tr>
<td>Schizophrenia</td>
</tr>
<tr>
<td>Temporal lobe epilepsy – left</td>
</tr>
<tr>
<td>Temporal lobe epilepsy – right</td>
</tr>
</tbody>
</table>

>20,000 patients
26 brain disorders

Crossley et al., *Brain*, 2014
Individual differences in brain modularity

Low Modularity

High Modularity

Subject 1

Subject 2
Brain modularity and behavior

![Graph showing the relationship between TRAIT (Modularity) and WM Capacity with r = 0.56, including data points for Session 1 and 2, and Session 1 only.]

Trait

State

- Easy
- Medium
- Hard
Baseline brain modularity predicts hits and misses

Sadaghiani, Poline, Kleinschmidt, D’Esposito, PNAS, 2015
Cognitive therapy intervention for traumatic brain injury

Pre-assessment

Goal Management Training or Brain Health Education

Post-assessment

Follow-up assessment

- Wk 1
- Wk 3
- Wk 8
- Wk 10
- Wk 26

- 10 Sessions (2x / week) = 20 hours
- 20 hours @ home
- 3 hours one-on-one training
- Individual and group projects

- Neurocognitive Assessment
- Functional Assessments & Questionnaires
- Functional Imaging (fMRI)
Baseline modularity predicts cognitive training effects

Traumatic Brain Injury

Baseline Modularity

Arenmann et al., *Neurology*, 2015
Baseline brain modularity predicts cognitive training effects

Traumatic Brain Injury
Goal-Management Training

Healthy Young
WM Video Game Training

Healthy Older
SMART Training

Baseline Modularity
Duncan & Small, *Brain Connectivity*, 2017